Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species.
نویسندگان
چکیده
Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and basal ganglia of humans and the zebra finch species of songbird, among other brain regions. Mutations in either gene are associated with language disorders in humans. Experimental knock-down of FoxP2 in the basal ganglia song control region Area X during song development leads to imprecise copying of tutor songs. Moreover, FoxP2 levels decrease naturally within Area X when zebra finches sing. Here, we examined neural expression patterns of FoxP1 and FoxP2 mRNA in adult Bengalese finches, a songbird species whose songs exhibit greater sequence complexity and increased reliance on audition for maintaining their quality. We found that FoxP1 and FoxP2 expression in Bengalese finches is similar to that in zebra finches, including strong mRNA signals for both factors in multiple song control nuclei and enhancement of FoxP1 in these regions relative to surrounding brain tissue. As with zebra finches, when Bengalese finches sing, FoxP2 is behaviorally downregulated within basal ganglia Area X over a similar time course, and expression negatively correlates with the amount of singing. This study confirms that in multiple songbird species, FoxP1 expression highlights song control regions, and regulation of FoxP2 is associated with motor control of song.
منابع مشابه
Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction.
Humans and songbirds are two of the rare animal groups that modify their innate vocalizations. The identification of FOXP2 as the monogenetic locus of a human speech disorder exhibited by members of the family referred to as KE enables the first examination of whether molecular mechanisms for vocal learning are shared between humans and songbirds. Here, in situ hybridization analyses for FoxP1 ...
متن کاملA 785kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis.
We report a child with a 785kb deletion of the 3p14.1p13 region including the genes FOXP1, EIF4E3, PROK2, GPR27 resulting in speech delay, contractures, hypertonia and blepharophimosis. FOXP1 and FOXP2 are transcription factors containing a polyglutamine tract and a forkhead DNA binding domain. They both play a role in the developing human foregut and brain [W. Shu, M.M. Lu, Y. Zhang, P. Tucker...
متن کاملDifferential FoxP2 and FoxP1 expression in a vocal learning nucleus of the developing budgerigar.
The forkhead domain FOXP2 and FOXP1 transcription factors are implicated in several cognitive disorders with language deficits, notably autism, and thus play a central role in learned vocal motor behavior in humans. Although a similar role for FoxP2 and FoxP1 is proposed for other vertebrate species, including songbirds, the neurodevelopmental expression of these genes are unknown in a species ...
متن کاملIdentification of FOXP1 Deletions in Three Unrelated Patients with Mental Retardation and Significant Speech and Language Deficits
Mental retardation affects 2-3% of the population and shows a high heritability.Neurodevelopmental disorders that include pronounced impairment in language and speech skills occur less frequently. For most cases, the molecular basis of mental retardation with or without speech and language disorder is unknown due to the heterogeneity of underlying genetic factors.We have used molecular karyotyp...
متن کاملMolecular Microcircuitry Underlies Functional Specification in a Basal Ganglia Circuit Dedicated to Vocal Learning
Similarities between speech and birdsong make songbirds advantageous for investigating the neurogenetics of learned vocal communication--a complex phenotype probably supported by ensembles of interacting genes in cortico-basal ganglia pathways of both species. To date, only FoxP2 has been identified as critical to both speech and birdsong. We performed weighted gene coexpression network analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 216 Pt 19 شماره
صفحات -
تاریخ انتشار 2013